જો $f\left( n \right) = \left[ {\frac{1}{3} + \frac{{3n}}{{100}}} \right]n$ , જ્યાં $[n]$ મહત્તમ પૂર્ણાંક વિધેય હોય તો $\sum\limits_{n = 1}^{56} {f\left( n \right)} $ ની કિમત મેળવો.
$56$
$689$
$1287$
$1399$
વિધેય $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ નો પ્રદેશ મેળવો.
જો $a+\alpha=1, b+\beta=2$ અને $\operatorname{af}(x)+\alpha f\left(\frac{1}{x}\right)=b x+\frac{\beta}{x}, x \neq 0,$ તો અભિવ્યક્તિ $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ નું મૂલ્ય ..... છે.
સાબિત કરો કે $f: R \rightarrow R ,$ $f(x)=[x]$ દ્વારા વ્યાખ્યાયિત મહત્તમ પૂર્ણાક વિધેય $(Greatest\, integer \,function)$ એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. અહીં, $[x]$ એ $x$ થી નાના અથવા $x$ ને સમાન તમામ પૂર્ણાકોમાં મહત્તમ પૂર્ણાક દર્શાવે છે. બીજા શબ્દોમાં $x$ થી અધિક નહિ તેવા પૂર્ણાકોમાં સૌથી મોટો પૂર્ણાક $x$ છે.
જો $R _{1}$ અને $R _{2}$ બે સંબંધો નીચે મુજબ વ્યાખીયાયિત છે :
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ અને $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$
જ્યાં $Q$ એ સંમેય સંખ્યાઓનો ગણ છે તો
જો દરેક $x \in R$ માટે વિધેય $f:R \to R$ અને $g:R \to R$ એ $f(x) = \;|x|$ અને $g(x) = \;|x|$ આપેલ છે , તો $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $